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Information Thermodynamics

Information

€« 0 -
Ueedback

Information processing at the level of thermal fluctuations

v’ Foundation of the second law of thermodynamics

v’ Application to nanomachines and nanodevices

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).



L. Szilard, Z. Phys. 53, 840 (1929)

Szilard Engine (1929)
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Experimental Realizations

e With a colloidal particle
Toyabe, TS, Ueda, Muneyuki, & Sano, Nature Physics (2010)

Efficiency: 30%

Validation of <e‘ﬂ(W‘AF)> =y

* With a single electron
Koski, Maisi, TS, & Pekola, PRL (2014)

Efficiency: 75%

Validation of <e—ﬂ(W—AF)—| > -1
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Mutual Information

System S Memory M
y (measurement device) Syste¢ ory M
Measurement with stochastic errors

1(S:M)=H(S)+H(M)—H(SM)
Shannon information H = —Zk p. Inp,

0<I1<H(M)

Correlation between S and M

[ No information No error




Upper Bound of Extractable Work by Feedback

"

Information |
Assumption:
‘ Feedback Initial canonical distribution
Heat Work
bath @ W, TS and M. Ueda, PRL 100, 080403 (2008).
TS and M. Ueda, PRL 104, 090602 (2010).

AF

D W, <-AF&k,TI

The upper bound of the work extracted by the demon
is bounded by the mutual information.

The equality is achieved in the thermodynamically reversible limit



Information Heat Engine

Conventional heat engine:
Heat - Work

Heat efficiency
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Information heat engine:
Mutual information - Work and Free energy

W, +AF < k_TI.

&7 ﬁ Szilard engine }
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Entropy Production

Stochastic dynamics of system S (e.g., Langevin system)

Work Heat bath B
ork W i
Sys tem S (inverse temperature p)
Heat Q

Entropy production — _ ﬂ Q
in the total system: ASSB — ASS
Change in Averaged heat

the Shannon absorbed by S
entropy of S




Two Approaches to Continuous Information Flow

* “Transfer entropy” approach
v’ Applicable to non-Markovian dynamics
v’ Second law is weaker in Markovian dynamics

lto & Sagawa, Phys. Rev. Lett. (2013)

* “Information flow” approach
v Not applicable to non-Markovian dynamics
v’ Second law is stronger in Markovian dynamics

Second law: Allahverdyan, Dominik & Guenter, J. Stat. Mech. (2009)
Horowitz & Esposito, Phys. Rev. X (2014)
Horowitz & Sandberg, New J. Phys. (2014)
Fluctuation theorem: Shiraishi & Sagawa, Phys. Rev. E (2015)
Rosinberg & Horowitz, EPL (2016)
Onsager reciprocity: Yamamoto, Ito, Shiraishi, & Sagawa, PRE (2016)



Transfer Entropy

Directional information transfer between two systems

(X " ,Yn) TiTe Transfer entropy:

Directional information flow
EX from XtoY
during time n and n+1
(Xn—l fYn—l)
? Conditional mutual information
T(X,,—=Y)=1(X_,:Y Y ,--Y)
. P(Xas Yo | Yorr Vo)
= X1 Yoo Y, In .
? yzy P Yoo o) P(Xoa | Yoo Ya) P(Ya | Yoo Yaa)
(X4, Y0)

T. Schreiber, PRL 85, 461 (2000)



Many-body Systems with
Complex Information Flow

Time
System X & 1

?Jl:l:t:.'li'k] |1-'J=:: ey Gyr—1 \l

Other systems

Cause (Parents)

. e Pfl(g_j) i : (b) . (e.g., memory)
(a) : . Node: Event

Arrow: Causal relationship

[Characterize the dynamics by Bayesian networks ]

Sosuke Ito & TS, PRL 111, 180603 (2013).



Example: Measurement and Feedback

The joint probability

PO ) p(my | X)) p(X; | my, xl)

; Feedback

evolution

Time

under

feedback
control /
Measurement
<:Eé:>




Second Law on Bayesian Networks

AS,, > @

Informational quantity:
_ |
O = Ifin - Iini _Z Itr
|

ASXB : Entropy production in X and the bath

;i : Initial correlation between X and the other systems
|, : Final correlation between X and the other systems

ItrI: Transfer entropy from X to the other systems during the dynamics

Sosuke Ito & TS, PRL 111, 180603 (2013).



Reproduce the Second Law with Feedback

tT A y X: Engine
X )= Y: Demon
[rem . I '“
¥ .
i D y 1n2 j
O X
Feedback: Control protocol depends
on the measurement outcome
Al=1_ —1

ASXB > —(I — I rem) (Upper bound of) the correlation
that is used by feedback

(W) > AF —KkgT]
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Toward Biological Information Processing

[What is the role of information in living systems? J

Mutual information is experimentally accessible
ex. Apoptosis path: Cheong et al. Science (2011).

There is no explicit channel coding inside living cells;
Shannon’s second theorem is not straightforwardly applicable

» Application of information thermodynamics

Barato, Hartich & Seifert, New J. Phys. 16, 103024 (2014).
Sartori, Granger, Lee & Horowitz, PLoS Compt. Biol. 10, e1003974 (2014).
Ito & Sagawa, Nat. Commu. 6, 7498 (2015).

Our finding:
Relationship between information and the robustness of adaptation




Signal Transduction of E. Coli Chemotaxis

Measurement

o
o
Ligand [ 1
PN G,
- 4 ne
° Methylation level \  Kinase activity G Flagellar motor
of receptor - :
Esalvang \> : Negative feedback loop

E. Coli moves toward food (ligand)

The information about ligand density is
transferred to the methylation level of the receptor,
and used for the feedback to the kinase activity.



Adaptation Dynamics

. Y. Tu et al., Proc. Natl. Acad. Sci. USA 105, 14855 (2008).
ZD I-a nge‘"n mOdEI F. Tostevin and P. R. ten Wolde, Phys. Rev. Lett. 102, 218101 (2009).
F. G. Lan et al., Nature Physics 8, 422 (2012).
1
. — a
at = —T—a[@t — ag(my, ly)| + &
1 (at : kinase activity A
. — —|— gm .
i m At t m¢ : methylation level
T . :
[, : average ligand density
(E2Y =0 (E%€5) = 2T 8500 O (t — 1) (7™ >>7% >0 : time constants
f_l,t (mt, lt) ™~ omy — /&t : stationary value of at £ =0 PG
; l
a,8 >0 L

Negative feedbackloop: T e

v' Instantaneous change of a in response to |,
v' Memorize |, by m, A
v' a, goes back to the initial value

time



Second Law of Information Thermodynamics

-

Jg
dIf +dSP™ > “tdi
N L

J

delm = (]Il P(at|mt)> — (]Il p(at+dt|mt+dt)) : Change in the conditional Shannon entropy

dI;* := I(as : myyq:|my) : Transfer entropy

Jf_l[

Ji Ta _ ((ay —8)?) | :Robustness against the
e Telg

t Ta environmental noise

[ Upper bound of the robustness is given by the transfer entropy 1

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015).



Stationary State

S
(ar —ar)?) > 7°T¢ |1 - =

Fluctuation (inaccuracy of

information transmission) Transfer entropy
induced by environmental noise

Without feedback ((a,t — ﬁ,t)2> > Tﬂ'Tta



Exact Expression of Transfer Entropy

If the Langevin equation is linear:

G
1 dP
dIf* = - In (1 + f)

Signal-to-noise ratio

(p{™)* Ve
db = (77m)?2 dt : power of the signal from a to m

Nt = 2Ttm - noise of M 1[/;: . (;E?) B <$t>2 pg,m = (atmt> — (at> (mt>

V VeV

[ Analogous to the Shannon—Hartley theorem ]




Information-thermodynamic Efficiency
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Input ligand signal: a, step function. b, sinusoidal function. c, linear function.

Numerical simulation:
Red: robustness of adaptation —info
Green: information-thermodynamic bound =¢

Blue: conventional thermodynamic bound Et

v Information thermodynamics gives a stronger bound.
v The adaptation dynamics is inefficient (dissipative) as a conventional
thermodynamic engine, but efficient as an information-thermodynamic engine.
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Summary

e Second law with transfer entropy on causal networks

S. Ito & T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013).

* Information thermodynamics of biochemical signal transduction
v’ Transfer entropy characterizes the robustness of adaptation

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015).

Review of information thermodynamics:
J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Thank you for your attention!



