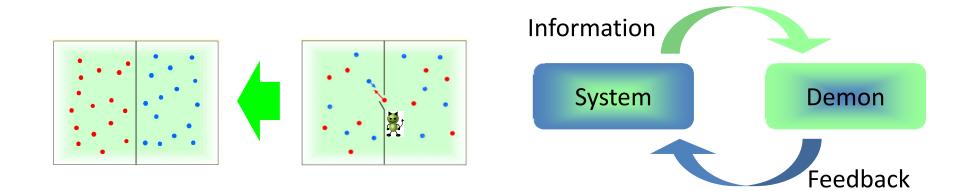

Information flow and entropy production in biochemical signal transduction


Workshop on Stochasticity and Fluctuations in Small Systems 30 November 2016, Pohang, Korea

Takahiro Sagawa

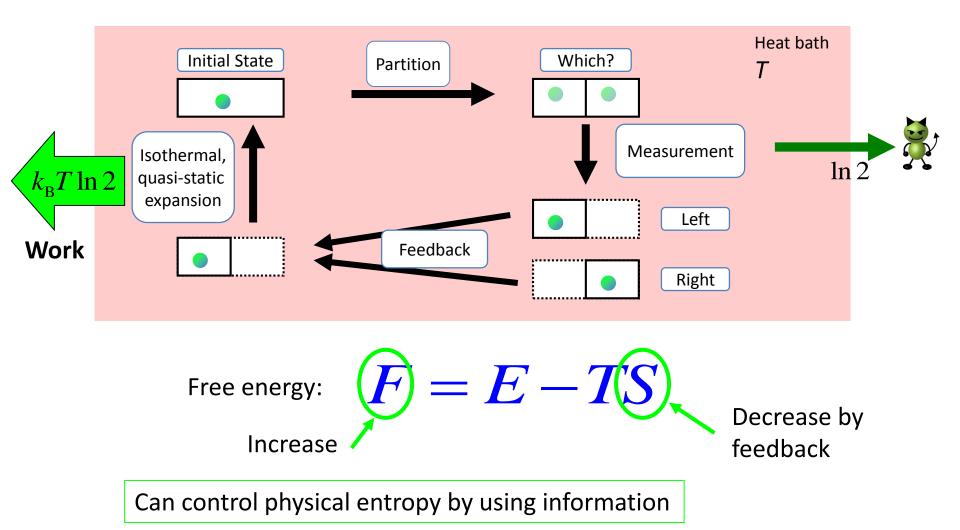
Department of Applied Physics, University of Tokyo


In collaboration with Sosuke Ito (Titech & AMOLF)

- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

Information Thermodynamics


Information processing at the level of thermal fluctuations

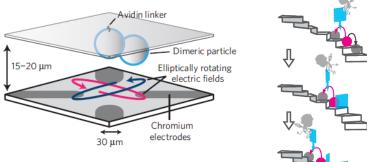
- ✓ Foundation of the second law of thermodynamics
- ✓ Application to nanomachines and nanodevices

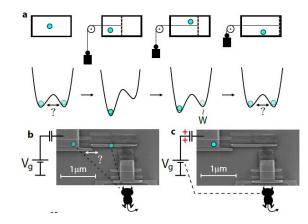
Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

L. Szilard, Z. Phys. 53, 840 (1929)

Szilard Engine (1929)

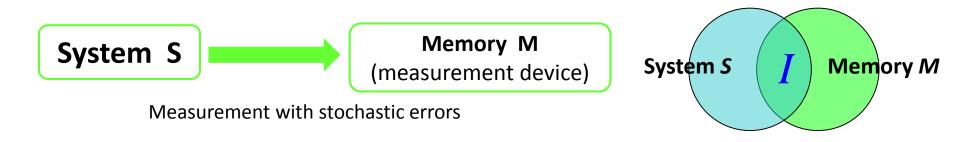
Experimental Realizations

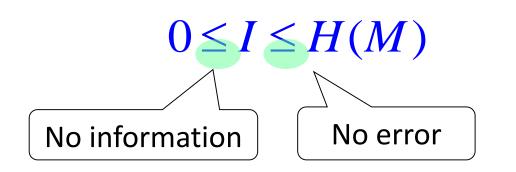

• With a colloidal particle Toyabe, TS, Ueda, Muneyuki, & Sano, Nature Physics (2010)


Efficiency: 30% Validation of $\left\langle e^{-\beta(W-\Delta F)} \right\rangle = \gamma$

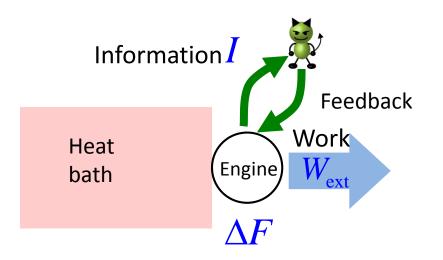
• With a single electron Koski, Maisi, TS, & Pekola, PRL (2014)

Efficiency: 75%


Validation of
$$\left\langle e^{-\beta(W-\Delta F)-I} \right\rangle = 1$$


- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

Mutual Information


$I(S:M) \equiv H(S) + H(M) - H(SM)$

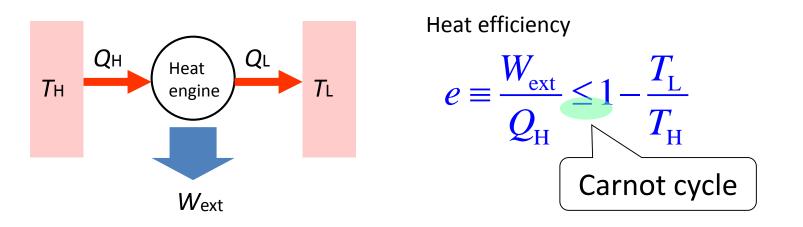
Shannon information $H = -\sum_{k} p_{k} \ln p_{k}$

Correlation between S and M

Upper Bound of Extractable Work by Feedback

Assumption: Initial canonical distribution

TS and M. Ueda, PRL **100**, 080403 (2008). TS and M. Ueda, PRL **104**, 090602 (2010).


$$W_{\rm ext} \le -\Delta F + k_{\rm B} T I$$

The upper bound of the work extracted by the demon is bounded by the mutual information.

The equality is achieved in the thermodynamically reversible limit

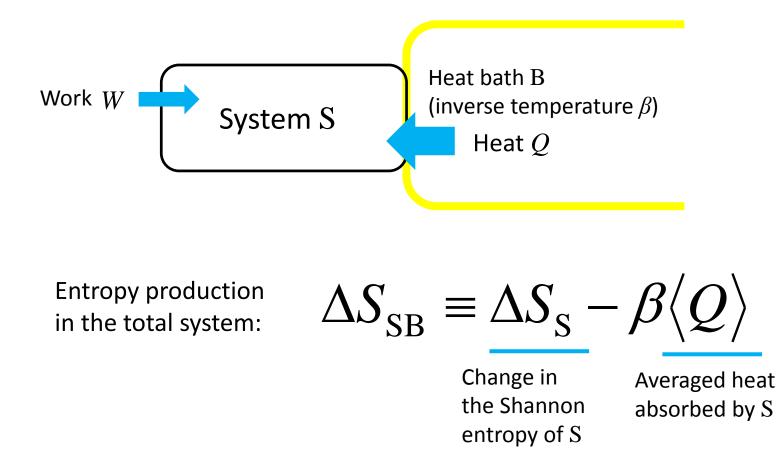
Information Heat Engine

Conventional heat engine: Heat \rightarrow Work

Information heat engine:

Mutual information → Work and Free energy

Szilard engine


 $W_{\rm ext} + \Delta F \leq k_{\rm B} T I.$

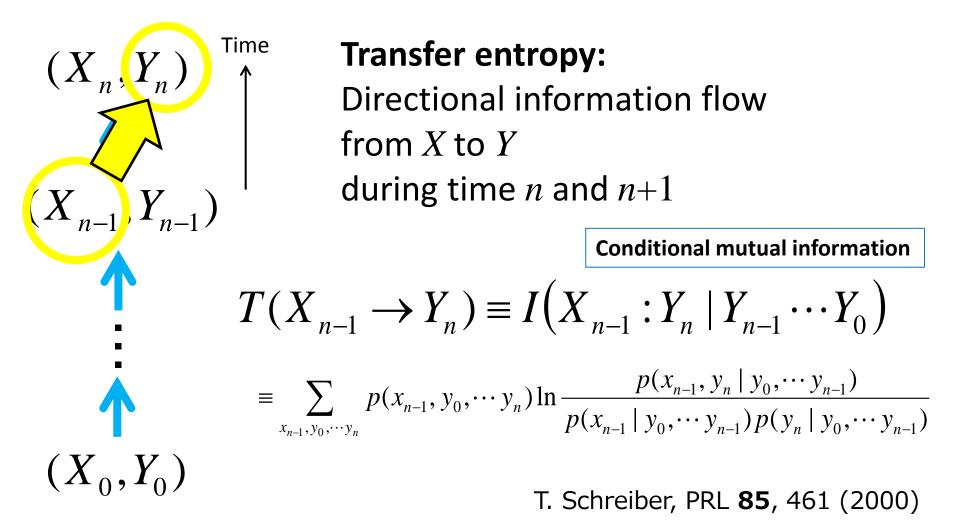
- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

Entropy Production

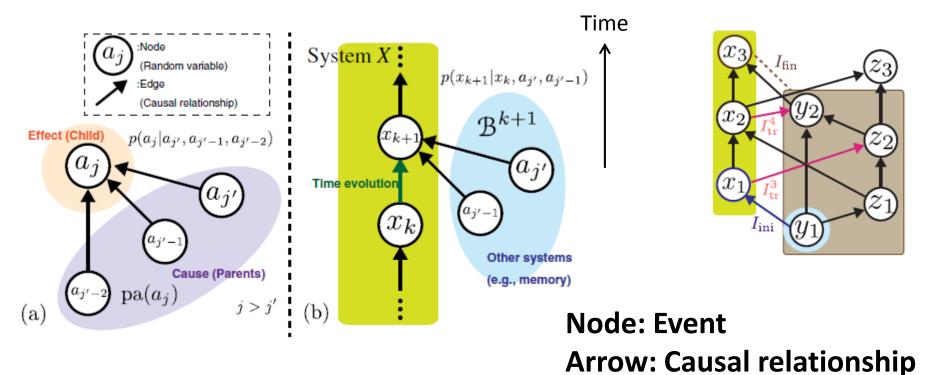
Stochastic dynamics of system S (e.g., Langevin system)

Two Approaches to Continuous Information Flow

- "Transfer entropy" approach
 - ✓ Applicable to non-Markovian dynamics
 - ✓ Second law is weaker in Markovian dynamics

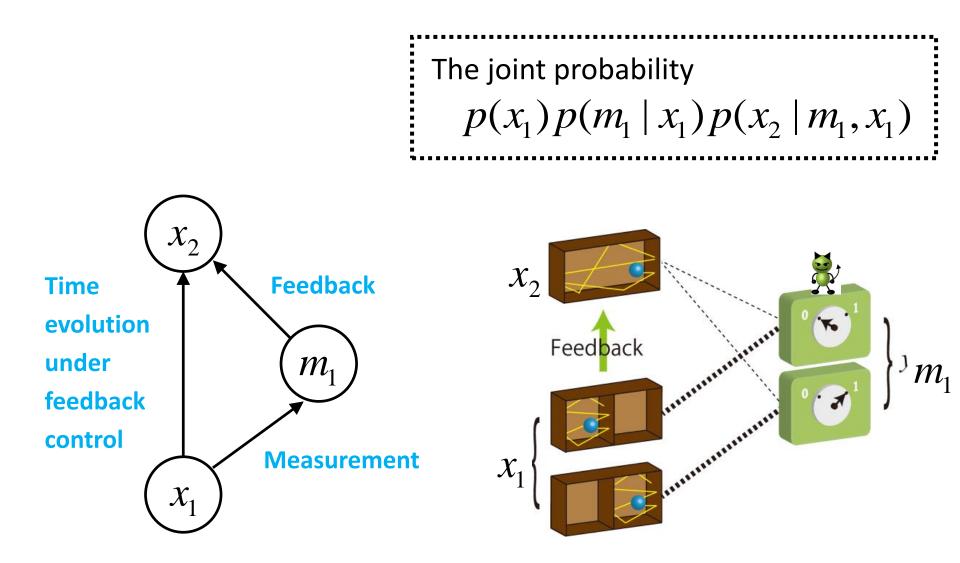

Ito & Sagawa, Phys. Rev. Lett. (2013)

- "Information flow" approach
 - ✓ Not applicable to non-Markovian dynamics
 - ✓ Second law is stronger in Markovian dynamics


Second law: Allahverdyan, Dominik & Guenter, J. Stat. Mech. (2009) Horowitz & Esposito, Phys. Rev. X (2014) Horowitz & Sandberg, New J. Phys. (2014)
Fluctuation theorem: Shiraishi & Sagawa, Phys. Rev. E (2015) Rosinberg & Horowitz, EPL (2016)
Onsager reciprocity: Yamamoto, Ito, Shiraishi, & Sagawa, PRE (2016)

Transfer Entropy

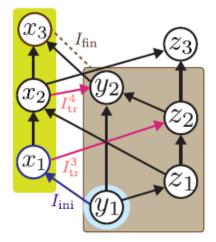
Directional information transfer between two systems


Many-body Systems with Complex Information Flow

Characterize the dynamics by **Bayesian networks**

Sosuke Ito & TS, PRL 111, 180603 (2013).

Example: Measurement and Feedback

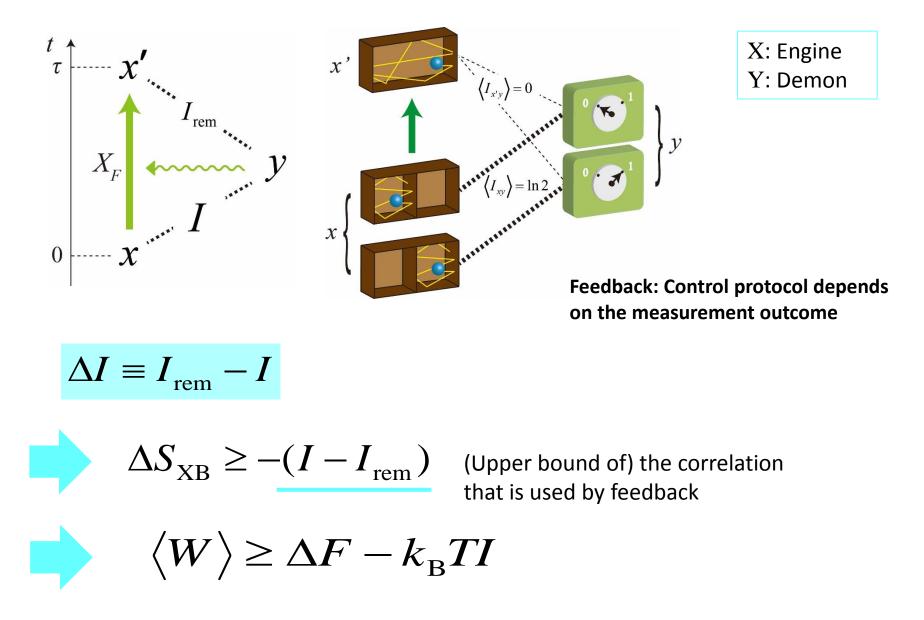


Second Law on Bayesian Networks

 $\Delta S_{\rm XR} \ge \Theta$

Informational quantity:

$$\Theta = I_{\rm fin} - I_{\rm ini} - \sum_{l} I_{\rm tr}^{l}$$



$\Delta S_{\rm XB}\,$: Entropy production in X and the bath

 $I_{\rm ini}$: Initial correlation between X and the other systems $I_{\rm fin}$: Final correlation between X and the other systems $I_{\rm tr}$: Transfer entropy from X to the other systems during the dynamics

Sosuke Ito & TS, PRL 111, 180603 (2013).

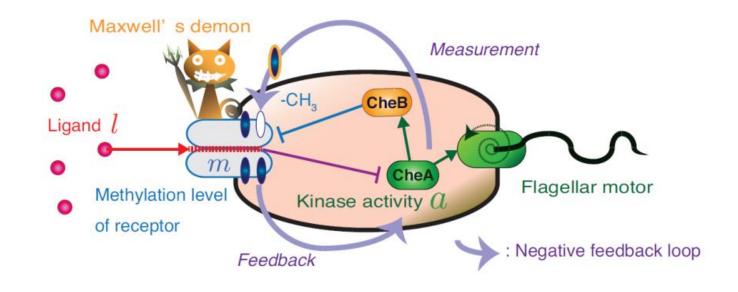
Reproduce the Second Law with Feedback

- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

Toward Biological Information Processing

What is the role of information in living systems?

Mutual information is experimentally accessible ex. Apoptosis path: Cheong *et al.* Science (2011).


There is no explicit channel coding inside living cells; Shannon's second theorem is not straightforwardly applicable

Application of information thermodynamics

Barato, Hartich & Seifert, New J. Phys. **16**, 103024 (2014). Sartori, Granger, Lee & Horowitz, PLoS Compt. Biol. **10**, e1003974 (2014). Ito & Sagawa, Nat. Commu. **6**, 7498 (2015).

Our finding: Relationship between information and the robustness of adaptation

Signal Transduction of E. Coli Chemotaxis

E. Coli moves toward food (ligand)

The information about **ligand density** is transferred to the **methylation level** of the receptor, and used for the feedback to the **kinase activity**.

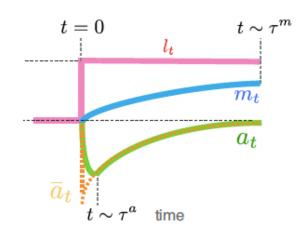
Adaptation Dynamics

2D Langevin model

Y. Tu *et al., Proc. Natl. Acad. Sci. USA* 105, 14855 (2008).
F. Tostevin and P. R. ten Wolde, *Phys. Rev. Lett.* 102, 218101 (2009).
F. G. Lan *et al., Nature Physics* 8, 422 (2012).

$$\dot{a}_t = -\frac{1}{\tau^a} [a_t - \bar{a}_t(m_t, l_t)] + \xi^a_t$$

$$\dot{m}_t = -\frac{1}{\tau^m}a_t + \xi_t^m$$


$$\langle \xi_t^x \rangle = 0 \quad \langle \xi_t^x \xi_{t'}^{x'} \rangle = 2T_t^x \delta_{xx'} \delta(t - t')$$

$$ar{a}_t(m_t,l_t)\simeq lpha m_t -eta l_t$$
 : stationary value of a_t $lpha,eta>0$

Negative feedback loop:

- ✓ Instantaneous change of a_t in response to l_t
- ✓ Memorize l_t by m_t
- $\checkmark a_t$ goes back to the initial value

 a_t : kinase activity m_t : methylation level l_t : average ligand density $\tau^m \gg \tau^a > 0$: time constants

Second Law of Information Thermodynamics

$$dI_t^{\mathrm{tr}} + dS_t^{a|m} \geq \frac{J_t^a}{T_t^a} dt$$

 $dS_t^{a|m} := \langle \ln p(a_t|m_t)
angle - \langle \ln p(a_{t+dt}|m_{t+dt})
angle \,$: Change in the conditional Shannon entropy

 $dI_t^{\mathrm{tr}} := I(a_t : m_{t+dt} | m_t)$: Transfer entropy

$$\frac{J_t^a}{T_t^a} = \frac{1}{\tau^a T_t^a} \begin{bmatrix} T_t^a - \frac{\langle (a_t - \bar{a}_t)^2 \rangle}{\tau^a} \end{bmatrix} : \text{Robustness against the} \\ \text{environmental noise} \end{cases}$$

Upper bound of the robustness is given by the transfer entropy

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015).

Stationary State

$$\langle (a_t - \bar{a}_t)^2 \rangle \ge \tau^a T_t^a \left[1 - \frac{dI_t^{\text{tr}}}{dt} \right]$$

Fluctuation (inaccuracy of information transmission) induced by environmental noise

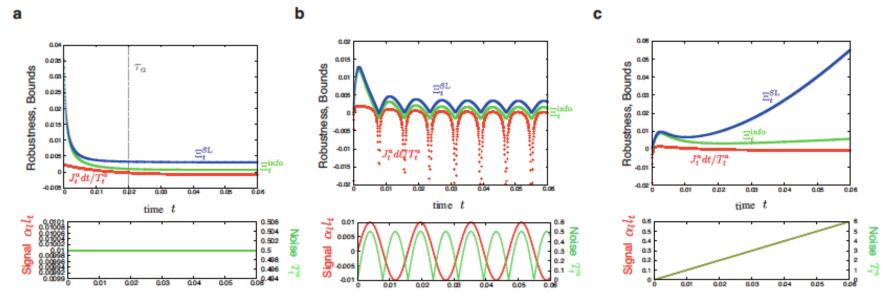
Transfer entropy

Without feedback:
$$\langle (a_t - ar{a}_t)^2
angle \geq au^a T_t^a$$

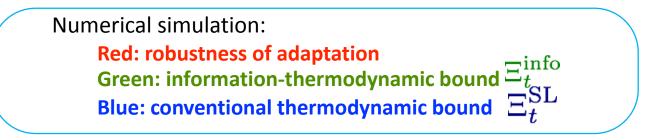
Exact Expression of Transfer Entropy

If the Langevin equation is linear:

$$dI_t^{\rm tr} = \frac{1}{2} \ln \left(1 + \frac{dP_t}{N_t} \right)$$


Signal-to-noise ratio

$$dP_t := rac{(
ho_t^{am})^2 V_t^a}{(au^m)^2} dt \;\;$$
 : power of the signal from a to m


$$N_t := 2T_t^m$$
 : noise of m $V_t^x := \langle x_t^2 \rangle - \langle x_t \rangle^2$ $ho_t^{am} := rac{\langle a_t m_t
angle - \langle a_t
angle \langle m_t
angle}{\sqrt{V_t^a V_t^m}}$

Analogous to the Shannon–Hartley theorem

Information-thermodynamic Efficiency

Input ligand signal: a, step function. b, sinusoidal function. c, linear function.

- ✓ Information thermodynamics gives a stronger bound.
- The adaptation dynamics is inefficient (dissipative) as a conventional thermodynamic engine, but efficient as an information-thermodynamic engine.

- Introduction
- Information and thermodynamics
- Thermodynamics with continuous information flow
- Application to biochemical signal transduction
- Summary

Summary

• Second law with transfer entropy on causal networks

S. Ito & T. Sagawa, *Phys. Rev. Lett.* **111**, 180603 (2013).

Information thermodynamics of biochemical signal transduction
 ✓ Transfer entropy characterizes the robustness of adaptation

S. Ito & T. Sagawa, *Nature Communications* 6, 7498 (2015).

Review of information thermodynamics:

J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, *Nature Physics* **11**, 131-139 (2015).

Thank you for your attention!